Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1504592513009185039 ~1995
1504602233009204479 ~1995
1504638713009277439 ~1995
150465739270838330310 ~1997
150468251270842851910 ~1997
150468259150468259110 ~1997
1504682993009365999 ~1995
1504684979028109839 ~1996
150471103150471103110 ~1997
150471787361132288910 ~1998
1504744619028467679 ~1996
1504772633009545279 ~1995
1504795313009590639 ~1995
150481027150481027110 ~1997
150483209210676492710 ~1997
1504933913009867839 ~1995
150493769361185045710 ~1998
1504954913009909839 ~1995
1504977233009954479 ~1995
1504981913009963839 ~1995
1504984219029905279 ~1996
150500369120400295310 ~1996
150502637120402109710 ~1996
1505066513010133039 ~1995
1505067113010134239 ~1995
Exponent Prime Factor Digits Year
1505108633010217279 ~1995
1505108819030652879 ~1996
1505120033010240079 ~1995
1505167313010334639 ~1995
1505172713010345439 ~1995
1505305913010611839 ~1995
1505334833010669679 ~1995
1505342393010684799 ~1995
1505399539032397199 ~1996
1505427619032565679 ~1996
1505457779032746639 ~1996
150549907150549907110 ~1997
150552343150552343110 ~1997
150563297120450637710 ~1996
150563801120451040910 ~1996
1505653913011307839 ~1995
150566107150566107110 ~1997
150567253240907604910 ~1997
1505675033011350079 ~1995
1505680913011361839 ~1995
1505688113011376239 ~1995
1505688971445461411311 ~1999
1505692913011385839 ~1995
1505695793011391599 ~1995
1505760113011520239 ~1995
Exponent Prime Factor Digits Year
150580601120464480910 ~1996
1505882393011764799 ~1995
1505904833011809679 ~1995
1505907113011814239 ~1995
1505940113011880239 ~1995
1505946593011893199 ~1995
1505968433011936879 ~1995
150597599120478079310 ~1996
1505998313011996639 ~1995
1506103193012206399 ~1995
150617321120493856910 ~1996
1506208193012416399 ~1995
1506218179037309039 ~1996
1506223793012447599 ~1995
1506245633012491279 ~1995
1506247379037484239 ~1996
1506261233012522479 ~1995
1506264739037588399 ~1996
1506273113012546239 ~1995
1506279233012558479 ~1995
150628727361508944910 ~1998
150630793241009268910 ~1997
1506332993012665999 ~1995
1506335033012670079 ~1995
150635267271143480710 ~1997
Exponent Prime Factor Digits Year
1506398993012797999 ~1995
150650189451950567110 ~1998
1506536633013073279 ~1995
1506584393013168799 ~1995
1506631433013262879 ~1995
1506632513013265039 ~1995
150665807120532645710 ~1996
1506666113013332239 ~1995
1506704331536838416711 ~1999
1506800539040803199 ~1996
1506803579040821439 ~1996
1506830033013660079 ~1995
1506892193013784399 ~1995
1506898819041392879 ~1996
1506918139041508799 ~1996
1506928313013856639 ~1995
1507002713014005439 ~1995
1507009193014018399 ~1995
150702197210983075910 ~1997
150706817120565453710 ~1996
1507095713014191439 ~1995
1507106633014213279 ~1995
150710951271279711910 ~1997
1507127033014254079 ~1995
1507182593014365199 ~1995
Home
5.157.210 digits
e-mail
25-11-02