Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1834245233668490479 ~1996
1834329713668659439 ~1996
1834338233668676479 ~1996
1834380113668760239 ~1996
183438929146751143310 ~1997
183440321587009027310 ~1998
183444809880535083310 ~1999
183444953110066971910 ~1997
1834454033668908079 ~1996
1834468313668936639 ~1996
1834487633668975279 ~1996
183449033440277679310 ~1998
183450473110070283910 ~1997
1834546793669093599 ~1996
1834589393669178799 ~1996
183459919183459919110 ~1997
183461233110076739910 ~1997
1834667993669335999 ~1996
1834679393669358799 ~1996
1834745633669491279 ~1996
1834773831210950727911 ~1999
1834774913669549839 ~1996
1834796033669592079 ~1996
183482177550446531110 ~1998
1834949393669898799 ~1996
Exponent Prime Factor Digits Year
1834982513669965039 ~1996
1835015513670031039 ~1996
183503777146803021710 ~1997
1835114033670228079 ~1996
183511817110107090310 ~1997
1835175113670350239 ~1996
18351935917214115874312 ~2002
1835199113670398239 ~1996
1835230793670461599 ~1996
1835280713670561439 ~1996
1835306633670613279 ~1996
183533057256946279910 ~1998
183539171587325347310 ~1998
183549287146839429710 ~1997
1835535233671070479 ~1996
183556027440534464910 ~1998
183559333440542399310 ~1998
183560087146848069710 ~1997
183561647146849317710 ~1997
1835700833671401679 ~1996
183570787734283148110 ~1999
183571841110143104710 ~1997
1835730833671461679 ~1996
1835756993671513999 ~1996
183584923293735876910 ~1998
Exponent Prime Factor Digits Year
1835892713671785439 ~1996
183591757110155054310 ~1997
183594833257032766310 ~1998
1836029993672059999 ~1996
1836045113672090239 ~1996
1836070313672140639 ~1996
183607037146885629710 ~1997
1836102113672204239 ~1996
183624017110174410310 ~1997
183627553110176531910 ~1997
183630437110178262310 ~1997
183630817110178490310 ~1997
1836340793672681599 ~1996
183636293257090810310 ~1998
1836396113672792239 ~1996
183639719587647100910 ~1998
183639761146911808910 ~1997
1836399833672799679 ~1996
1836408833672817679 ~1996
183643049146914439310 ~1997
183648301110188980710 ~1997
1836493793672987599 ~1996
1836500633673001279 ~1996
1836525833673051679 ~1996
1836533993673067999 ~1996
Exponent Prime Factor Digits Year
1836536633673073279 ~1996
183654061110192436710 ~1997
1836557393673114799 ~1996
1836636113673272239 ~1996
1836639233673278479 ~1996
1836640313673280639 ~1996
1836660233673320479 ~1996
1836663833673327679 ~1996
1836778313673556639 ~1996
183683791183683791110 ~1997
1836851633673703279 ~1996
1836960113673920239 ~1996
1836985193673970399 ~1996
183701533293922452910 ~1998
1837074833674149679 ~1996
1837117913674235839 ~1996
1837141433674282879 ~1996
1837171193674342399 ~1996
183717733110230639910 ~1997
1837215113674430239 ~1996
1837254713674509439 ~1996
183729607293967371310 ~1998
1837316513674633039 ~1996
1837317593674635199 ~1996
1837330313674660639 ~1996
Home
4.903.097 digits
e-mail
25-07-08