Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
181373273253922582310 ~1998
1813751633627503279 ~1995
1813762313627524639 ~1995
1813794593627589199 ~1995
181382533399041572710 ~1998
1813873793627747599 ~1995
1813892513627785039 ~1995
181392773108835663910 ~1997
1813961993627923999 ~1995
181398221108838932710 ~1997
1814000993628001999 ~1995
181400749435361797710 ~1998
181406557108843934310 ~1997
1814066633628133279 ~1995
181417799145134239310 ~1997
1814210393628420799 ~1995
1814293313628586639 ~1995
1814348393628696799 ~1995
1814377793628755599 ~1995
1814398313628796639 ~1995
1814402993628805999 ~1995
181442057254018879910 ~1998
1814420993628841999 ~1995
181447807326606052710 ~1998
1814516033629032079 ~1995
Exponent Prime Factor Digits Year
1814537993629075999 ~1995
1814545433629090879 ~1995
1814560433629120879 ~1995
181457699145166159310 ~1997
181458457108875074310 ~1997
181461317108876790310 ~1997
1814633393629266799 ~1995
1814662313629324639 ~1995
1814769593629539199 ~1995
181481213254073698310 ~1998
1814840633629681279 ~1995
1814844233629688479 ~1995
1814865233629730479 ~1995
1814940113629880239 ~1995
181496827181496827110 ~1997
181499117108899470310 ~1997
1814991593629983199 ~1995
1815043313630086639 ~1995
1815043433630086879 ~1995
181505321108903192710 ~1997
1815055313630110639 ~1995
1815174113630348239 ~1995
181520147145216117710 ~1997
181522619871308571310 ~1999
181526159435662781710 ~1998
Exponent Prime Factor Digits Year
181531027617205491910 ~1999
1815345713630691439 ~1995
181536737254151431910 ~1998
1815405713630811439 ~1995
1815443993630887999 ~1995
181545061290472097710 ~1998
1815459713630919439 ~1995
1815464993630929999 ~1995
1815513233631026479 ~1995
181555739326800330310 ~1998
1815563393631126799 ~1995
1815588233631176479 ~1995
1815618833631237679 ~1995
1815647633631295279 ~1995
1815709793631419599 ~1995
181579213108947527910 ~1997
1815801833631603679 ~1995
181582957108949774310 ~1997
1815844793631689599 ~1995
1815855113631710239 ~1995
1815860633631721279 ~1995
1815982433631964879 ~1995
1816018397845199444911 ~2001
1816020233632040479 ~1995
1816055633632111279 ~1995
Exponent Prime Factor Digits Year
181609321544827963110 ~1998
181610413290576660910 ~1998
1816160633632321279 ~1995
1816186313632372639 ~1995
181622069435892965710 ~1998
1816276793632553599 ~1995
1816277033632554079 ~1995
181636207181636207110 ~1997
1816402193632804399 ~1995
1816423193632846399 ~1995
181645397108987238310 ~1997
1816478033632956079 ~1995
1816497113632994239 ~1995
1816501913633003839 ~1995
181654337108992602310 ~1997
1816554713633109439 ~1995
1816575593633151199 ~1995
181662913108997747910 ~1997
1816646633633293279 ~1995
1816680233633360479 ~1995
1816684193633368399 ~1995
1816707593633415199 ~1995
1816730393633460799 ~1995
1816738793633477599 ~1995
181674491472353676710 ~1998
Home
4.903.097 digits
e-mail
25-07-08