Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2057427834114855679 ~1996
2057487714114975439 ~1996
2057540394115080799 ~1996
2057550594115101199 ~1996
2057574114115148239 ~1996
205767629164614103310 ~1997
205771567329234507310 ~1998
2057743914115487839 ~1996
2057790114115580239 ~1996
2057791914115583839 ~1996
2057895114115790239 ~1996
205795003823180012110 ~1999
205798193123478915910 ~1997
205799261123479556710 ~1997
2058007794116015599 ~1996
2058067194116134399 ~1996
2058074634116149279 ~1996
205814647205814647110 ~1998
2058152994116305999 ~1996
2058203394116406799 ~1996
2058216114116432239 ~1996
2058235434116470879 ~1996
2058250194116500399 ~1996
2058252114116504239 ~1996
2058326394116652799 ~1996
Exponent Prime Factor Digits Year
205837271164669816910 ~1997
205841609658693148910 ~1999
2058436194116872399 ~1996
2058580434117160879 ~1996
2058586434117172879 ~1996
205869701123521820710 ~1997
2058697434117394879 ~1996
205871657123522994310 ~1997
2058793914117587839 ~1996
20588356918282460927312 ~2002
2058897594117795199 ~1996
2058973434117946879 ~1996
2058999834117999679 ~1996
2059102314118204639 ~1996
205912843205912843110 ~1998
205913941123548364710 ~1997
2059146714118293439 ~1996
205917227164733781710 ~1997
2059187994118375999 ~1996
20591998311243231071912 ~2002
2059228314118456639 ~1996
205924561123554736710 ~1997
2059265514118531039 ~1996
2059334394118668799 ~1996
205936001164748800910 ~1997
Exponent Prime Factor Digits Year
2059387794118775599 ~1996
2059397034118794079 ~1996
2059486434118972879 ~1996
205950509617851527110 ~1999
2059513314119026639 ~1996
205951919164761535310 ~1997
2059533234119066479 ~1996
2059541634119083279 ~1996
205956691205956691110 ~1998
2059583034119166079 ~1996
205960481123576288710 ~1997
205965869782670302310 ~1999
2059684914119369839 ~1996
2059714434119428879 ~1996
2059717914119435839 ~1996
2059726194119452399 ~1996
2059756914119513839 ~1996
205979533123587719910 ~1997
2059810434119620879 ~1996
205984637123590782310 ~1997
205985011329576017710 ~1998
2059919634119839279 ~1996
2059936314119872639 ~1996
2059965594119931199 ~1996
2059973994119947999 ~1996
Exponent Prime Factor Digits Year
2059986234119972479 ~1996
206004053123602431910 ~1997
2060055114120110239 ~1996
206008009453217619910 ~1998
2060102514120205039 ~1996
2060180514120361039 ~1996
206023991164819192910 ~1997
206025419164820335310 ~1997
206029207206029207110 ~1998
206042597164834077710 ~1997
2060463714120927439 ~1996
2060518434121036879 ~1996
2060538114121076239 ~1996
2060558514121117039 ~1996
206058641123635184710 ~1997
2060710914121421839 ~1996
2060714514121429039 ~1996
2060742834121485679 ~1996
2060747514121495039 ~1996
2060832594121665199 ~1996
2060974314121948639 ~1996
2060989794121979599 ~1996
2061208794122417599 ~1996
2061262794122525599 ~1996
206127553123676531910 ~1997
Home
4.739.325 digits
e-mail
25-04-20