Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
174796381104877828710 ~1997
1747986012377260973711 ~2000
1748031593496063199 ~1995
174808511139846808910 ~1997
1748085833496171679 ~1995
174810871174810871110 ~1997
174812453104887471910 ~1997
174812467279699947310 ~1998
1748159993496319999 ~1995
1748164433496328879 ~1995
1748193833496387679 ~1995
1748235593496471199 ~1995
1748369393496738799 ~1995
174842377104905426310 ~1997
1748424713496849439 ~1995
174843869139875095310 ~1997
174848287174848287110 ~1997
1748505233497010479 ~1995
174856207174856207110 ~1997
174857693104914615910 ~1997
1748666513497333039 ~1995
1748705993497411999 ~1995
1748718713497437439 ~1995
174875531139900424910 ~1997
174878861139903088910 ~1997
Exponent Prime Factor Digits Year
1748816993497633999 ~1995
174882047139905637710 ~1997
1748825513497651039 ~1995
1748828993497657999 ~1995
174886333104931799910 ~1997
1748871713497743439 ~1995
174895451454728172710 ~1998
1748977313497954639 ~1995
174916117104949670310 ~1997
1749236633498473279 ~1995
174923743174923743110 ~1997
1749243713498487439 ~1995
1749271433498542879 ~1995
1749306113498612239 ~1995
1749333593498667199 ~1995
1749381713498763439 ~1995
174939761104963856710 ~1997
174950129139960103310 ~1997
174950597139960477710 ~1997
174952553244933574310 ~1997
174954691314918443910 ~1998
1749559193499118399 ~1995
1749612113499224239 ~1995
1749615713499231439 ~1995
1749653633499307279 ~1995
Exponent Prime Factor Digits Year
174966823174966823110 ~1997
174972053979843496910 ~1999
174972893104983735910 ~1997
174973009384940619910 ~1998
174977161104986296710 ~1997
174978701104987220710 ~1997
1749827633499655279 ~1995
1749853193499706399 ~1995
174991181139992944910 ~1997
174991457104994874310 ~1997
1749960713499921439 ~1995
174997091139997672910 ~1997
1749982313499964639 ~1995
1750024913500049839 ~1995
1750079993500159999 ~1995
175009721105005832710 ~1997
1750106513500213039 ~1995
175011167140008933710 ~1997
175018439140014751310 ~1997
1750257233500514479 ~1995
1750316393500632799 ~1995
1750462193500924399 ~1995
1750471793500943599 ~1995
1750499993500999999 ~1995
175051537105030922310 ~1997
Exponent Prime Factor Digits Year
1750541993501083999 ~1995
175060913105036547910 ~1997
1750614233501228479 ~1995
175062739175062739110 ~1997
175066141105039684710 ~1997
175077319315139174310 ~1998
1750801313501602639 ~1995
175083421105050052710 ~1997
175085033105051019910 ~1997
1750868393501736799 ~1995
1750892513501785039 ~1995
1750898393501796799 ~1995
175091179175091179110 ~1997
1750943033501886079 ~1995
175094729140075783310 ~1997
1750972913501945839 ~1995
1750977593501955199 ~1995
1750991633501983279 ~1995
175107469385236431910 ~1998
1751087513502175039 ~1995
175109219140087375310 ~1997
175110493280176788910 ~1998
175112117105067270310 ~1997
1751212793502425599 ~1995
175122427280195883310 ~1998
Home
4.903.097 digits
e-mail
25-07-08