Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
201450113120870067910 ~1997
2014549434029098879 ~1996
2014553394029106799 ~1996
2014598994029197999 ~1996
201461131322337809710 ~1998
2014660194029320399 ~1996
2014665714029331439 ~1996
201476677120886006310 ~1997
201478153120886891910 ~1997
201485579161188463310 ~1997
201491443322386308910 ~1998
2014939314029878639 ~1996
201504971161203976910 ~1997
201505877120903526310 ~1997
2015061714030123439 ~1996
2015069994030139999 ~1996
2015077314030154639 ~1996
2015095314030190639 ~1996
2015099394030198799 ~1996
2015130234030260479 ~1996
2015161314030322639 ~1996
2015166714030333439 ~1996
2015192994030385999 ~1996
201519911523951768710 ~1999
201520003685168010310 ~1999
Exponent Prime Factor Digits Year
2015295714030591439 ~1996
2015325114030650239 ~1996
201536359201536359110 ~1998
2015382834030765679 ~1996
2015423034030846079 ~1996
2015451114030902239 ~1996
2015458434030916879 ~1996
2015519634031039279 ~1996
2015545194031090399 ~1996
2015550234031100479 ~1996
2015566434031132879 ~1996
2015585034031170079 ~1996
2015592834031185679 ~1996
2015652114031304239 ~1996
201572717120943630310 ~1997
201574229161259383310 ~1997
2015742834031485679 ~1996
2015793594031587199 ~1996
2015795034031590079 ~1996
201588553120953131910 ~1997
201589217120953530310 ~1997
2015905914031811839 ~1996
201591473120954883910 ~1997
201592621120955572710 ~1997
201604303201604303110 ~1998
Exponent Prime Factor Digits Year
2016120234032240479 ~1996
2016141234032282479 ~1996
2016187794032375599 ~1996
2016230994032461999 ~1996
2016296514032593039 ~1996
2016339594032679199 ~1996
2016399234032798479 ~1996
2016404034032808079 ~1996
201644537120986722310 ~1997
2016459714032919439 ~1996
201649493120989695910 ~1997
201653659201653659110 ~1998
2016541434033082879 ~1996
2016708234033416479 ~1996
2016733314033466639 ~1996
2016816714033633439 ~1996
201686141605058423110 ~1999
201686531161349224910 ~1997
201692921161354336910 ~1997
2017013994034027999 ~1996
2017099794034199599 ~1996
201721777322754843310 ~1998
2017231434034462879 ~1996
201725047806900188110 ~1999
2017284594034569199 ~1996
Exponent Prime Factor Digits Year
201734657161387725710 ~1997
201738353121043011910 ~1997
2017428114034856239 ~1996
2017533234035066479 ~1996
2017576314035152639 ~1996
201766771201766771110 ~1998
201771593121062955910 ~1997
201777161161421728910 ~1997
2017853514035707039 ~1996
2017894914035789839 ~1996
2017913634035827279 ~1996
2017965594035931199 ~1996
201796921121078152710 ~1997
2018002434036004879 ~1996
2018040234036080479 ~1996
2018051994036103999 ~1996
2018053914036107839 ~1996
2018061834036123679 ~1996
201808093121084855910 ~1997
2018081514036163039 ~1996
2018132034036264079 ~1996
2018215314036430639 ~1996
2018279634036559279 ~1996
2018305914036611839 ~1996
2018580114037160239 ~1996
Home
4.739.325 digits
e-mail
25-04-20