Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1883035193766070399 ~1996
188307523301292036910 ~1998
188308451150646760910 ~1997
1883223833766447679 ~1996
188326169150660935310 ~1997
188329139150663311310 ~1997
1883309513766619039 ~1996
1883357393766714799 ~1996
1883387393766774799 ~1996
188343149150674519310 ~1997
188348749753394996110 ~1999
188356331150685064910 ~1997
188365217150692173710 ~1997
188377661113026596710 ~1997
1883852513767705039 ~1996
188394319452146365710 ~1998
188397557150718045710 ~1997
1883993033767986079 ~1996
1884005393768010799 ~1996
188404709150723767310 ~1997
1884060593768121199 ~1996
188414999150731999310 ~1997
188416807188416807110 ~1997
188418509263785912710 ~1998
1884235313768470639 ~1996
Exponent Prime Factor Digits Year
188425631489906640710 ~1998
1884272033768544079 ~1996
188428159188428159110 ~1997
1884331313768662639 ~1996
188433529452240469710 ~1998
188449567188449567110 ~1997
1884521513769043039 ~1996
1884540233769080479 ~1996
1884614633769229279 ~1996
188462993113077795910 ~1997
1884653633769307279 ~1996
1884665993769331999 ~1996
1884727313769454639 ~1996
188482187150785749710 ~1997
188483039150786431310 ~1997
1884883433769766879 ~1996
1884934913769869839 ~1996
1884947393769894799 ~1996
1885039793770079599 ~1996
1885096193770192399 ~1996
188509847339317724710 ~1998
1885172993770345999 ~1996
1885175033770350079 ~1996
1885220633770441279 ~1996
1885253411470497659911 ~2000
Exponent Prime Factor Digits Year
1885270193770540399 ~1996
188530079150824063310 ~1997
1885306793770613599 ~1996
188533253113119951910 ~1997
1885336433770672879 ~1996
1885390071696851063111 ~2000
1885466393770932799 ~1996
1885472571055864639311 ~1999
1885477433770954879 ~1996
188555657113133394310 ~1997
1885569713771139439 ~1996
1885628513771257039 ~1996
1885747193771494399 ~1996
188578217264009503910 ~1998
188580761150864608910 ~1997
188585591150868472910 ~1997
1886011313772022639 ~1996
1886031833772063679 ~1996
1886060513772121039 ~1996
1886066513772133039 ~1996
1886068433772136879 ~1996
1886150393772300799 ~1996
188615327943076635110 ~1999
1886166113772332239 ~1996
1886312513772625039 ~1996
Exponent Prime Factor Digits Year
1886375633772751279 ~1996
1886441993772883999 ~1996
188645461415020014310 ~1998
188646287150917029710 ~1997
1886463233772926479 ~1996
1886500433773000879 ~1996
1886530793773061599 ~1996
1886567393773134799 ~1996
1886630033773260079 ~1996
188667737113200642310 ~1997
1886698793773397599 ~1996
188671123188671123110 ~1997
1886761793773523599 ~1996
188677193113206315910 ~1997
1886772833773545679 ~1996
1886779433773558879 ~1996
1886782793773565599 ~1996
1886785433773570879 ~1996
1886793833773587679 ~1996
1886842913773685839 ~1996
1886870993773741999 ~1996
188688371150950696910 ~1997
188688823754755292110 ~1999
1886936513773873039 ~1996
188694433113216659910 ~1997
Home
4.739.325 digits
e-mail
25-04-20