Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
186883657112130194310 ~1997
1868838713737677439 ~1996
1868861633737723279 ~1996
1868862113737724239 ~1996
186895087186895087110 ~1997
1868979113737958239 ~1996
1869015233738030479 ~1996
1869043793738087599 ~1996
1869087833738175679 ~1996
1869139313738278639 ~1996
186918629149534903310 ~1997
1869276833738553679 ~1996
186928193112156915910 ~1997
186930203486018527910 ~1998
186930257112158154310 ~1997
1869317633738635279 ~1996
186935429149548343310 ~1997
1869516233739032479 ~1996
1869519113739038239 ~1996
1869541913739083839 ~1996
1869566033739132079 ~1996
186956993261739790310 ~1998
186963121112177872710 ~1997
1869642593739285199 ~1996
186965789261752104710 ~1998
Exponent Prime Factor Digits Year
1869691313739382639 ~1996
1869693713739387439 ~1996
1869701033739402079 ~1996
1869726833739453679 ~1996
1869731033739462079 ~1996
1869743513739487039 ~1996
1869758633739517279 ~1996
1869776393739552799 ~1996
1869822233739644479 ~1996
1869939593739879199 ~1996
1869975713739951439 ~1996
187001093112200655910 ~1997
187005121112203072710 ~1997
187006609448815861710 ~1998
187007461112204476710 ~1997
1870101113740202239 ~1996
1870187033740374079 ~1996
187019803299231684910 ~1998
1870284593740569199 ~1996
1870406993740813999 ~1996
1870473593740947199 ~1996
187047613112228567910 ~1997
1870477793740955599 ~1996
187053353112232011910 ~1997
1870535633741071279 ~1996
Exponent Prime Factor Digits Year
1870563233741126479 ~1996
1870625033741250079 ~1996
1870639313741278639 ~1996
1870663313741326639 ~1996
1870699313741398639 ~1996
1870718033741436079 ~1996
1870738913741477839 ~1996
1870760633741521279 ~1996
187082351486414112710 ~1998
187084237561252711110 ~1998
1870873313741746639 ~1996
1870892633741785279 ~1996
187101221112260732710 ~1997
187105007149684005710 ~1997
1871050313742100639 ~1996
187106027149684821710 ~1997
187107653112264591910 ~1997
187113077112267846310 ~1997
187117241112270344710 ~1997
1871185793742371599 ~1996
1871243513742487039 ~1996
187125361112275216710 ~1997
1871338793742677599 ~1996
1871375393742750799 ~1996
1871398313742796639 ~1996
Exponent Prime Factor Digits Year
1871412113742824239 ~1996
1871418593742837199 ~1996
187142377112285426310 ~1997
1871520833743041679 ~1996
187152313112291387910 ~1997
1871561993743123999 ~1996
1871611193743222399 ~1996
1871624633743249279 ~1996
1871705513743411039 ~1996
187171099187171099110 ~1997
1871758433743516879 ~1996
1871795393743590799 ~1996
1871850233743700479 ~1996
187190021112314012710 ~1997
187190699149752559310 ~1997
187192987299508779310 ~1998
1871954513743909039 ~1996
1871967713743935439 ~1996
187197977149758381710 ~1997
1872016433744032879 ~1996
1872020633744041279 ~1996
1872049313744098639 ~1996
187205159149764127310 ~1997
1872086393744172799 ~1996
1872088313744176639 ~1996
Home
4.739.325 digits
e-mail
25-04-20