Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1769507033539014079 ~1995
1769508593539017199 ~1995
1769548913539097839 ~1995
1769556593539113199 ~1995
176958209141566567310 ~1997
176966963424720711310 ~1998
1769724833539449679 ~1995
1769735513539471039 ~1995
1769739113539478239 ~1995
176975761106185456710 ~1997
1769760833539521679 ~1995
1769811113539622239 ~1995
1770050393540100799 ~1995
177007601141606080910 ~1997
177010429389422943910 ~1998
1770142911416114328111 ~1999
177016297106209778310 ~1997
1770177233540354479 ~1995
1770227393540454799 ~1995
1770269393540538799 ~1995
1770350033540700079 ~1995
1770416993540833999 ~1995
1770419993540839999 ~1995
1770432833540865679 ~1995
1770477233540954479 ~1995
Exponent Prime Factor Digits Year
1770593393541186799 ~1995
177060557106236334310 ~1997
177063371141650696910 ~1997
1770704993541409999 ~1995
177080503602073710310 ~1998
1770811433541622879 ~1995
1770812513541625039 ~1995
1770834113541668239 ~1995
1770854513541709039 ~1995
1770883913541767839 ~1995
177092053106255231910 ~1997
177093197247930475910 ~1997
177096793106258075910 ~1997
177102547425046112910 ~1998
1771040033542080079 ~1995
1771120313542240639 ~1995
1771235393542470799 ~1995
1771513793543027599 ~1995
1771562513543125039 ~1995
1771578113543156239 ~1995
1771582313543164639 ~1995
1771608713543217439 ~1995
1771680833543361679 ~1995
1771683113543366239 ~1995
1771711913543423839 ~1995
Exponent Prime Factor Digits Year
1771753193543506399 ~1995
1771764593543529199 ~1995
1771788713543577439 ~1995
1771800233543600479 ~1995
177188353106313011910 ~1997
1771906913543813839 ~1995
1771920833543841679 ~1995
177192259708769036110 ~1999
177193607425264656910 ~1998
1771944113543888239 ~1995
1771952513543905039 ~1995
177195497106317298310 ~1997
1771976513543953039 ~1995
177202981106321788710 ~1997
1772045633544091279 ~1995
1772065313544130639 ~1995
1772104793544209599 ~1995
1772137913544275839 ~1995
1772141513544283039 ~1995
1772153993544307999 ~1995
177228703177228703110 ~1997
1772310233544620479 ~1995
1772315033544630079 ~1995
1772323433544646879 ~1995
1772329433544658879 ~1995
Exponent Prime Factor Digits Year
1772350433544700879 ~1995
177236287177236287110 ~1997
177243043177243043110 ~1997
1772456393544912799 ~1995
1772495033544990079 ~1995
1772562833545125679 ~1995
1772643713545287439 ~1995
1772676593545353199 ~1995
177270559425449341710 ~1998
177274169141819335310 ~1997
1772802233545604479 ~1995
1772906513545813039 ~1995
177291197106374718310 ~1997
1772915993545831999 ~1995
1772923313545846639 ~1995
1772969633545939279 ~1995
1773007193546014399 ~1995
1773042233546084479 ~1995
177304559425530941710 ~1998
177304817106382890310 ~1997
177306761106384056710 ~1997
1773094793546189599 ~1995
1773147233546294479 ~1995
1773157913546315839 ~1995
177318133106390879910 ~1997
Home
4.739.325 digits
e-mail
25-04-20