Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
175060913105036547910 ~1997
1750614233501228479 ~1995
175062739175062739110 ~1997
175066141105039684710 ~1997
175077319315139174310 ~1998
1750801313501602639 ~1995
175083421105050052710 ~1997
175085033105051019910 ~1997
1750868393501736799 ~1995
1750892513501785039 ~1995
1750898393501796799 ~1995
175091179175091179110 ~1997
1750943033501886079 ~1995
175094729140075783310 ~1997
1750972913501945839 ~1995
1750977593501955199 ~1995
1750991633501983279 ~1995
175107469385236431910 ~1998
175109219140087375310 ~1997
175110493280176788910 ~1998
175112117105067270310 ~1997
1751212793502425599 ~1995
175122427280195883310 ~1998
1751252393502504799 ~1995
175128313105076987910 ~1997
Exponent Prime Factor Digits Year
1751289833502579679 ~1995
1751320313502640639 ~1995
1751375513502751039 ~1995
1751431793502863599 ~1995
1751451113502902239 ~1995
175147717105088630310 ~1997
1751610233503220479 ~1995
1751818793503637599 ~1995
175186511140149208910 ~1997
175187387140149909710 ~1997
1751922713503845439 ~1995
1751944193503888399 ~1995
1751962913503925839 ~1995
1752011393504022799 ~1995
175201721105121032710 ~1997
175203401105122040710 ~1997
1752080513504161039 ~1995
175210967140168773710 ~1997
1752129593504259199 ~1995
1752154313504308639 ~1995
1752210713504421439 ~1995
1752270113504540239 ~1995
175230037105138022310 ~1997
1752355793504711599 ~1995
175237219175237219110 ~1997
Exponent Prime Factor Digits Year
175238621140190896910 ~1997
1752405113504810239 ~1995
175245221105147132710 ~1997
1752493913504987839 ~1995
1752591593505183199 ~1995
175281767420676240910 ~1998
1752824033505648079 ~1995
1752830513505661039 ~1995
1752842513505685039 ~1995
175289339140231471310 ~1997
1752933233505866479 ~1995
1752944393505888799 ~1995
1753015313506030639 ~1995
1753037633506075279 ~1995
1753068233506136479 ~1995
175307381140245904910 ~1997
175307501140246000910 ~1997
1753148513506297039 ~1995
175316333105189799910 ~1997
175339993105203995910 ~1997
175346489140277191310 ~1997
175348451455905972710 ~1998
175356023736495296710 ~1999
1753586993507173999 ~1995
1753626113507252239 ~1995
Exponent Prime Factor Digits Year
1753656233507312479 ~1995
1753742633507485279 ~1995
1753803233507606479 ~1995
1753822193507644399 ~1995
1753836833507673679 ~1995
175385761105231456710 ~1997
1753867211227707047111 ~1999
1753867793507735599 ~1995
175391081105234648710 ~1997
175392293105235375910 ~1997
175401833105241099910 ~1997
1754062433508124879 ~1995
175407797105244678310 ~1997
1754303993508607999 ~1995
1754359193508718399 ~1995
1754362793508725599 ~1995
1754386193508772399 ~1995
1754456033508912079 ~1995
1754579633509159279 ~1995
1754600393509200799 ~1995
175461337105276802310 ~1997
1754626433509252879 ~1995
1754627513509255039 ~1995
1754668313509336639 ~1995
1754696033509392079 ~1995
Home
4.739.325 digits
e-mail
25-04-20