Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
171839201962299525710 ~1999
171840653103104391910 ~1996
171841451137473160910 ~1997
1718437391099799929711 ~1999
1718442233436884479 ~1995
1718488793436977599 ~1995
1718518193437036399 ~1995
1718550833437101679 ~1995
1718596433437192879 ~1995
1718662313437324639 ~1995
1718716433437432879 ~1995
171873059137498447310 ~1997
1718789513437579039 ~1995
1718827793437655599 ~1995
1718828393437656799 ~1995
171885911137508728910 ~1997
1718870633437741279 ~1995
171893861103136316710 ~1996
17189851162846095621712 ~2003
1719008033438016079 ~1995
1719018113438036239 ~1995
1719062633438125279 ~1995
171911717103147030310 ~1996
171913057412591336910 ~1998
1719197393438394799 ~1995
Exponent Prime Factor Digits Year
1719203633438407279 ~1995
1719206633438413279 ~1995
1719218633438437279 ~1995
1719291833438583679 ~1995
171929477240701267910 ~1997
1719347513438695039 ~1995
1719357233438714479 ~1995
171938801103163280710 ~1996
171939373103163623910 ~1996
1719395393438790799 ~1995
1719436793438873599 ~1995
1719538433439076879 ~1995
1719756411341409999911 ~1999
1719762233439524479 ~1995
1719775793439551599 ~1995
1719778913439557839 ~1995
171982751447155152710 ~1998
1719856793439713599 ~1995
1719871313439742639 ~1995
1719922793439845599 ~1995
1720009313440018639 ~1995
1720011833440023679 ~1995
172003253103201951910 ~1996
1720040993440081999 ~1995
172012637240817691910 ~1997
Exponent Prime Factor Digits Year
172013357137610685710 ~1997
1720156193440312399 ~1995
1720163633440327279 ~1995
1720189913440379839 ~1995
1720226633440453279 ~1995
172023161103213896710 ~1996
172033139137626511310 ~1997
1720346513440693039 ~1995
1720377593440755199 ~1995
1720416713440833439 ~1995
1720477793440955599 ~1995
172054657103232794310 ~1996
1720576433441152879 ~1995
172059137103235482310 ~1996
1720624193441248399 ~1995
1720680233441360479 ~1995
1720683113441366239 ~1995
1720684193441368399 ~1995
1720755833441511679 ~1995
1720811033441622079 ~1995
172081213103248727910 ~1996
172082717963663215310 ~1999
1720827833441655679 ~1995
1720830833441661679 ~1995
172086349413007237710 ~1998
Exponent Prime Factor Digits Year
172086721103252032710 ~1996
1720915193441830399 ~1995
172092821103255692710 ~1996
1720933913441867839 ~1995
1720940633441881279 ~1995
1720957193441914399 ~1995
1720959233441918479 ~1995
1720978193441956399 ~1995
172103167172103167110 ~1997
1721045993442091999 ~1995
1721054033442108079 ~1995
1721090513442181039 ~1995
172115051137692040910 ~1997
172119289413086293710 ~1998
1721214833442429679 ~1995
172125937103275562310 ~1996
1721275193442550399 ~1995
1721279993442559999 ~1995
1721300993442601999 ~1995
1721310833442621679 ~1995
1721340713442681439 ~1995
172136369240990916710 ~1997
1721402393442804799 ~1995
1721468993442937999 ~1995
172149251447588052710 ~1998
Home
4.739.325 digits
e-mail
25-04-20