Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
155653919124523135310 ~1996
1556541419339248479 ~1996
1556605379339632239 ~1996
155666789124533431310 ~1996
1556671913113343839 ~1995
1556694113113388239 ~1995
155669411404740468710
1556745171619014976911 ~1999
1556824793113649599 ~1995
155684833373643599310 ~1998
1556865233113730479 ~1995
1556905433113810879 ~1995
1556906633113813279 ~1995
1556937113113874239 ~1995
1556944339341665999 ~1996
1556966033113932079 ~1995
1556969513113939039 ~1995
1556997179341983039 ~1996
1557032539342195199 ~1996
1557063593114127199 ~1995
1557077633114155279 ~1995
1557109379342656239 ~1996
155712989124570391310 ~1996
155713457373712296910 ~1998
1557149393114298799 ~1995
Exponent Prime Factor Digits Year
155716139124572911310 ~1996
1557175913114351839 ~1995
1557223793114447599 ~1995
155727149124581719310 ~1996
1557281419343688479 ~1996
1557306713114613439 ~1995
1557339113114678239 ~1995
1557347033114694079 ~1995
1557366833114733679 ~1995
155741933218038706310 ~1997
155742859280337146310 ~1997
1557491513114983039 ~1995
155751647124601317710 ~1996
1557534833115069679 ~1995
155760667280369200710 ~1997
155767307124613845710 ~1996
155776867155776867110 ~1997
1557806993115613999 ~1995
1557833633115667279 ~1995
1557853193115706399 ~1995
1557859793115719599 ~1995
1557876833115753679 ~1995
155788709965889995910 ~1999
1557952913115905839 ~1995
1557960593115921199 ~1995
Exponent Prime Factor Digits Year
1557992393115984799 ~1995
1557994913115989839 ~1995
1557999019347994079 ~1996
1558065713116131439 ~1995
1558107233116214479 ~1995
1558142033116284079 ~1995
1558180793116361599 ~1995
1558183913116367839 ~1995
1558184993116369999 ~1995
155821399155821399110 ~1997
155823961249318337710 ~1997
1558239713116479439 ~1995
155826287280487316710 ~1997
1558310411371313160911 ~1999
1558481393116962799 ~1995
1558498193116996399 ~1995
155849849124679879310 ~1996
1558514393117028799 ~1995
1558535633117071279 ~1995
155853959124683167310 ~1996
155855131155855131110 ~1997
155856751249370801710 ~1997
1558649633117299279 ~1995
1558756193117512399 ~1995
1558779072618748837711 ~2000
Exponent Prime Factor Digits Year
1558800379352802239 ~1996
1558804793117609599 ~1995
1558818113117636239 ~1995
1558854593117709199 ~1995
1558865393117730799 ~1995
1558883393117766799 ~1995
1558901513117803039 ~1995
1558923233117846479 ~1995
1558929593117859199 ~1995
1558936313117872639 ~1995
1559090513118181039 ~1995
1559121113118242239 ~1995
155912531405372580710 ~1998
1559131433118262879 ~1995
1559135339354811999 ~1996
1559146913118293839 ~1995
155915527249464843310 ~1997
1559176913118353839 ~1995
1559178739355072399 ~1996
1559224913118449839 ~1995
155928583155928583110 ~1997
1559329793118659599 ~1995
1559349233118698479 ~1995
1559357393118714799 ~1995
1559379619356277679 ~1996
Home
4.739.325 digits
e-mail
25-04-20