Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1519907033039814079 ~1995
151992583364782199310 ~1998
1519926233039852479 ~1995
1519943099332450572711 ~2001
1519963433039926879 ~1995
1519992179119953039 ~1996
1520190113040380239 ~1995
1520201633040403279 ~1995
1520213513040427039 ~1995
1520213779121282639 ~1996
1520228179121369039 ~1996
1520232419121394479 ~1996
1520234779121408639 ~1996
152030699121624559310 ~1996
1520317913040635839 ~1995
1520328233040656479 ~1995
1520399339122395999 ~1996
1520419793040839599 ~1995
152045251243272401710 ~1997
1520459033040918079 ~1995
1520526233041052479 ~1995
1520554793041109599 ~1995
1520581433041162879 ~1995
1520641193041282399 ~1995
1520667233041334479 ~1995
Exponent Prime Factor Digits Year
152077753334571056710 ~1997
1520791313041582639 ~1995
1520906633041813279 ~1995
1520948633041897279 ~1995
1520952619125715679 ~1996
1520968313041936639 ~1995
1520991419125948479 ~1996
1521016379126098239 ~1996
1521081113042162239 ~1995
1521104633042209279 ~1995
1521150113042300239 ~1995
1521154139126924799 ~1996
152115947121692757710 ~1996
152118521121694816910 ~1996
1521206513042413039 ~1995
1521332033042664079 ~1995
1521390593042781199 ~1995
152146723152146723110 ~1997
1521493313042986639 ~1995
1521540833043081679 ~1995
1521546593043093199 ~1995
152156357121725085710 ~1996
1521613019129678079 ~1996
1521647219129883279 ~1996
1521664939129989599 ~1996
Exponent Prime Factor Digits Year
152167541121734032910 ~1996
152169547365206912910 ~1998
1521709793043419599 ~1995
152173067121738453710 ~1996
152174801121739840910 ~1996
1521756233043512479 ~1995
152184581121747664910 ~1996
1521855713043711439 ~1995
152189087121751269710 ~1996
152190053213066074310 ~1997
1521921979131531839 ~1996
1521957233043914479 ~1995
1522029233044058479 ~1995
152204959152204959110 ~1997
1522088393044176799 ~1995
1522198913044397839 ~1995
1522213433044426879 ~1995
1522248113044496239 ~1995
1522271993044543999 ~1995
1522292993044585999 ~1995
1522320113044640239 ~1995
1522330433044660879 ~1995
1522342819134056879 ~1996
1522395833044791679 ~1995
152239727121791781710 ~1996
Exponent Prime Factor Digits Year
1522425233044850479 ~1995
152242603243588164910 ~1997
1522437713044875439 ~1995
152245397121796317710 ~1996
1522479233044958479 ~1995
1522518713045037439 ~1995
1522610993045221999 ~1995
152263871121811096910 ~1996
1522708313045416639 ~1995
152271731274089115910 ~1997
1522718033045436079 ~1995
1522723433045446879 ~1995
1522749593045499199 ~1995
1522772993045545999 ~1995
1522778033045556079 ~1995
1522796633045593279 ~1995
152283731121826984910 ~1996
152287937365491048910 ~1998
1522887779137326639 ~1996
1522905113045810239 ~1995
1522974713045949439 ~1995
1522994033045988079 ~1995
1523000779138004639 ~1996
1523113313046226639 ~1995
1523143219138859279 ~1996
Home
4.739.325 digits
e-mail
25-04-20