Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1449603832899207679 ~1995
1449641032899282079 ~1995
1449644392899288799 ~1995
1449652218697913279 ~1996
1449663832899327679 ~1995
1449666232899332479 ~1995
1449693712899387439 ~1995
1449725632899451279 ~1995
1449729592899459199 ~1995
1449766618698599679 ~1996
1449809992899619999 ~1995
1449840112899680239 ~1995
1449858738699152399 ~1996
1449873712899747439 ~1995
144987551115990040910 ~1996
1449908992899817999 ~1995
144992129115993703310 ~1996
1449927616698665558311 ~2001
1449934192899868399 ~1995
1449937912899875839 ~1995
1449941032899882079 ~1995
1449977992899955999 ~1995
1449986032899972079 ~1995
144999301434997903110 ~1998
1450050618700303679 ~1996
Exponent Prime Factor Digits Year
1450050712900101439 ~1995
1450056832900113679 ~1995
145007383609031008710 ~1998
145008257435024771110 ~1998
1450087618700525679 ~1996
1450118512900237039 ~1995
1450134112900268239 ~1995
1450148992900297999 ~1995
1450163632900327279 ~1995
1450237312900474639 ~1995
1450260232900520479 ~1995
1450272778701636639 ~1996
1450364392900728799 ~1995
1450374112900748239 ~1995
145043953348105487310 ~1997
1450469032900938079 ~1995
1450489938702939599 ~1996
1450496992900993999 ~1995
145050187232080299310 ~1997
145051267145051267110 ~1996
1450522912901045839 ~1995
145053691261096643910 ~1997
1450545138703270799 ~1996
1450613632901227279 ~1995
145069219609290719910 ~1998
Exponent Prime Factor Digits Year
1450709032901418079 ~1995
145071959348172701710 ~1997
1450730392901460799 ~1995
145073183377190275910 ~1997
1450792192901584399 ~1995
1450823632901647279 ~1995
145082683145082683110 ~1996
1450864432901728879 ~1995
1450892392901784799 ~1995
1450931632901863279 ~1995
1450954792901909599 ~1995
1450976632901953279 ~1995
1450986738705920399 ~1996
145100621116080496910 ~1996
1451035312902070639 ~1995
1451049232902098479 ~1995
1451073378706440239 ~1996
1451106138706636799 ~1996
1451128432902256879 ~1995
1451184232902368479 ~1995
1451191792902383599 ~1995
1451304232902608479 ~1995
1451317432902634879 ~1995
1451337112902674239 ~1995
1451341912902683839 ~1995
Exponent Prime Factor Digits Year
1451408392902816799 ~1995
145142819464457020910 ~1998
1451438992902877999 ~1995
1451537632903075279 ~1995
1451562832903125679 ~1995
1451651517229224519911 ~2001
1451670232903340479 ~1995
1451675512903351039 ~1995
1451700592903401199 ~1995
1451712418710274479 ~1996
1451720032903440079 ~1995
1451733832903467679 ~1995
1451792992903585999 ~1995
1451860912903721839 ~1995
145189657348455176910 ~1997
1451958712903917439 ~1995
145197737551751400710 ~1998
145199981116159984910 ~1996
1452040192904080399 ~1995
1452059818712358879 ~1996
1452076192904152399 ~1995
1452103912904207839 ~1995
1452115978712695839 ~1996
1452156112904312239 ~1995
1452171832904343679 ~1995
Home
4.739.325 digits
e-mail
25-04-20