Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1385786032771572079 ~1995
1385868232771736479 ~1995
138588943332613463310 ~1997
1385896312771792639 ~1995
1385966632771933279 ~1995
1385977432771954879 ~1995
1385984032771968079 ~1995
1385984512771969039 ~1995
1385993392771986799 ~1995
138602951110882360910 ~1996
1386035392772070799 ~1995
1386056392772112799 ~1995
138606371110885096910 ~1996
1386082312772164639 ~1995
138609871138609871110 ~1996
138610651138610651110 ~1996
1386117712772235439 ~1995
1386122811330677897711 ~1999
1386127912772255839 ~1995
1386225018317350079 ~1996
1386227178317363039 ~1996
1386231378317388239 ~1996
1386360832772721679 ~1995
1386393832772787679 ~1995
1386402418318414479 ~1996
Exponent Prime Factor Digits Year
1386402592772805199 ~1995
1386436792772873599 ~1995
1386457912772915839 ~1995
1386546232773092479 ~1995
1386578032773156079 ~1995
138662339110929871310 ~1996
1386710512773421039 ~1995
1386740938320445599 ~1996
1386750112773500239 ~1995
1386766912773533839 ~1995
138678887110943109710 ~1996
1386793792773587599 ~1995
1386849618321097679 ~1996
1386879592773759199 ~1995
138688481110950784910 ~1996
1386950992773901999 ~1995
138698669194178136710 ~1997
138699167110959333710 ~1996
1386992178321953039 ~1996
1387003432774006879 ~1995
1387055032774110079 ~1995
1387068712774137439 ~1995
138708881110967104910 ~1996
1387099792774199599 ~1995
1387118778322712639 ~1996
Exponent Prime Factor Digits Year
138718709110974967310 ~1996
1387194112774388239 ~1995
1387198912774397839 ~1995
1387231578323389439 ~1996
1387244992774489999 ~1995
138739507138739507110 ~1996
1387403338324419999 ~1996
1387415032774830079 ~1995
138746441110997152910 ~1996
1387489792774979599 ~1995
1387498792774997599 ~1995
138752681111002144910 ~1996
1387581618325489679 ~1996
1387664032775328079 ~1995
138770227138770227110 ~1996
1387711312775422639 ~1995
1387729192775458399 ~1995
1387753792775507599 ~1995
138778319111022655310 ~1996
138785869333086085710 ~1997
138786491111029192910 ~1996
138787489305332475910 ~1997
1387876792775753599 ~1995
1387882312775764639 ~1995
1387896712775793439 ~1995
Exponent Prime Factor Digits Year
1387980832775961679 ~1995
138806783694033915110 ~1998
1388086792776173599 ~1995
1388095912776191839 ~1995
138811649416434947110 ~1997
1388152912776305839 ~1995
1388241232776482479 ~1995
1388287432776574879 ~1995
1388313592776627199 ~1995
1388334171666001004111 ~1999
1388346232776692479 ~1995
1388358832776717679 ~1995
1388366992776733999 ~1995
1388370712776741439 ~1995
138841253860815768710 ~1998
1388428138330568799 ~1996
1388486632776973279 ~1995
1388510392777020799 ~1995
1388537632777075279 ~1995
1388614792777229599 ~1995
138869683333287239310 ~1997
1388767792777535599 ~1995
1388815312777630639 ~1995
138883513222213620910 ~1997
1388906512777813039 ~1995
Home
4.739.325 digits
e-mail
25-04-20