Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1189157632378315279 ~1994
1189208032378416079 ~1994
1189210937135265599 ~1995
1189236832378473679 ~1994
1189256992378513999 ~1994
1189259032378518079 ~1994
1189330912378661839 ~1994
1189338232378676479 ~1994
1189348017136088079 ~1995
1189409992378819999 ~1994
118942709285462501710 ~1997
1189447792378895599 ~1994
1189483912378967839 ~1994
1189560592379121199 ~1994
1189562512379125039 ~1994
118957087118957087110 ~1996
1189579312379158639 ~1994
1189582432379164879 ~1994
1189682632379365279 ~1994
1189689112379378239 ~1994
1189691392379382799 ~1994
118969993261733984710 ~1997
1189702319517618499 ~1996
1189732432379464879 ~1994
1189760032379520079 ~1994
Exponent Prime Factor Digits Year
1189788232379576479 ~1994
118985287285564688910 ~1997
1189872832379745679 ~1994
1189880632379761279 ~1994
1189885312379770639 ~1994
1189897792379795599 ~1994
118990397285576952910 ~1997
1189934992379869999 ~1994
1189978912379957839 ~1994
1190025537140153199 ~1995
1190042512380085039 ~1994
1190061592380123199 ~1994
1190075279520602179 ~1996
1190085537140513199 ~1995
1190101792380203599 ~1994
1190251337141507999 ~1995
1190298712380597439 ~1994
1190304417141826479 ~1995
1190325193356717035911 ~1999
1190326017141956079 ~1995
1190377817142266879 ~1995
1190426032380852079 ~1994
1190432512380865039 ~1994
1190467312380934639 ~1994
1190481779523854179 ~1996
Exponent Prime Factor Digits Year
1190531992381063999 ~1994
1190563192381126399 ~1994
1190601592381203199 ~1994
1190622592381245199 ~1994
1190658737143952399 ~1995
1190690817144144879 ~1995
1190699392381398799 ~1994
1190740192381480399 ~1994
1190742479525939779 ~1996
119078131190525009710 ~1996
1190828632381657279 ~1994
1190888992381777999 ~1994
1190899912381799839 ~1994
119093153166730414310 ~1996
1190936032381872079 ~1994
1190941912381883839 ~1994
1190962912381925839 ~1994
1191046912382093839 ~1994
1191057617146345679 ~1995
1191084479528675779 ~1996
1191091432382182879 ~1994
1191139017146834079 ~1995
1191141232382282479 ~1994
1191214792382429599 ~1994
1191224032382448079 ~1994
Exponent Prime Factor Digits Year
1191226312382452639 ~1994
1191277337147663999 ~1995
119135641357406923110 ~1997
1191407392382814799 ~1994
119142581667198453710 ~1998
1191444712382889439 ~1994
1191458632382917279 ~1994
1191487192382974399 ~1994
1191508619532068899 ~1996
1191548632383097279 ~1994
1191553912383107839 ~1994
1191569032383138079 ~1994
1191571192383142399 ~1994
119160317166824443910 ~1996
1191618592383237199 ~1994
1191636232383272479 ~1994
1191734279533874179 ~1996
1191774832383549679 ~1994
1191798712383597439 ~1994
119185519762787321710 ~1998
1191860032383720079 ~1994
1191870112383740239 ~1994
1191878992383757999 ~1994
1191902992383805999 ~1994
1191909017151454079 ~1995
Home
4.918.085 digits
e-mail
25-07-13