Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1014831416088988479 ~1995
1014840592029681199 ~1994
1014872992029745999 ~1994
1014891232029782479 ~1994
1014914512029829039 ~1994
101494231101494231110 ~1995
1014951232029902479 ~1994
1014959632029919279 ~1994
1014967978119743779 ~1995
1014987778119902179 ~1995
1014998032029996079 ~1994
1015007234384831233711 ~1999
101500843243602023310 ~1996
1015023712030047439 ~1994
101502851263907412710 ~1996
1015083592030167199 ~1994
101510113162416180910 ~1996
1015121992030243999 ~1994
1015130392030260799 ~1994
1015138312030276639 ~1994
1015142512030285039 ~1994
101519287162430859310 ~1996
101520709223345559910 ~1996
1015224616091347679 ~1995
1015224976091349839 ~1995
Exponent Prime Factor Digits Year
1015248832030497679 ~1994
1015249912030499839 ~1994
1015277032030554079 ~1994
101529629142141480710 ~1996
1015323112030646239 ~1994
1015338232030676479 ~1994
1015376032030752079 ~1994
1015376776092260639 ~1995
1015387192030774399 ~1994
1015387432030774879 ~1994
1015397032030794079 ~1994
1015434832030869679 ~1994
1015444192030888399 ~1994
1015475032030950079 ~1994
1015488011137346571311 ~1998
1015506976093041839 ~1995
1015529632031059279 ~1994
101553787101553787110 ~1995
101556529304669587110 ~1996
1015597792031195599 ~1994
1015603312031206639 ~1994
1015604632031209279 ~1994
1015677592031355199 ~1994
1015681432031362879 ~1994
1015686718125493699 ~1995
Exponent Prime Factor Digits Year
1015775518126204099 ~1995
101582059101582059110 ~1995
1015822192031644399 ~1994
1015845232031690479 ~1994
1015855691706637559311 ~1998
1015860598126884739 ~1995
1015898992031797999 ~1994
1015975912031951839 ~1994
1015980376095882239 ~1995
1016071792032143599 ~1994
1016076592032153199 ~1994
1016088232032176479 ~1994
1016117392032234799 ~1994
1016133712032267439 ~1994
101617613142264658310 ~1996
1016183992032367999 ~1994
1016193832032387679 ~1994
101621977548758675910 ~1997
1016232832032465679 ~1994
1016252392032504799 ~1994
1016266912032533839 ~1994
1016268832032537679 ~1994
1016289112032578239 ~1994
101631163914680467110 ~1998
1016329618130636899 ~1995
Exponent Prime Factor Digits Year
101634931182942875910 ~1996
1016363992032727999 ~1994
1016368136098208799 ~1995
1016401312032802639 ~1994
1016419491036747879911 ~1998
1016459632032919279 ~1994
101648377162637403310 ~1996
1016489512032979039 ~1994
1016496232032992479 ~1994
1016511712033023439 ~1994
1016523891545116312911 ~1998
1016531416099188479 ~1995
1016540512033081039 ~1994
1016565592033131199 ~1994
101658463162653540910 ~1996
1016601376099608239 ~1995
1016642032033284079 ~1994
101664821487991140910 ~1997
1016659976099959839 ~1995
1016662616099975679 ~1995
101667893142335050310 ~1996
1016701336100207999 ~1995
1016702936100217599 ~1995
1016704318133634499 ~1995
1016747992033495999 ~1994
Home
4.918.085 digits
e-mail
25-07-13