Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1053693112107386239 ~1994
1053699832107399679 ~1994
1053708832107417679 ~1994
1053723016322338079 ~1995
1053729416322376479 ~1995
105375187105375187110 ~1995
1053753176322519039 ~1995
1053773512107547039 ~1994
1053776632107553279 ~1994
1053828112107656239 ~1994
1053888176323329039 ~1995
1053888736323332399 ~1995
1053893536323361199 ~1995
1053931616323589679 ~1995
1053965032107930079 ~1994
1053974032107948079 ~1994
1054014592108029199 ~1994
1054066432108132879 ~1994
1054078912108157839 ~1994
1054136632108273279 ~1994
1054168192108336399 ~1994
1054215592108431199 ~1994
1054275832108551679 ~1994
1054278592108557199 ~1994
1054286392108572799 ~1994
Exponent Prime Factor Digits Year
1054333432108666879 ~1994
1054344712108689439 ~1994
105434587168695339310 ~1996
1054349512108699039 ~1994
1054359376326156239 ~1995
1054405978435247779 ~1995
1054415032108830079 ~1994
1054455592108911199 ~1994
1054456432108912879 ~1994
1054559278436474179 ~1995
1054564432109128879 ~1994
1054590478436723779 ~1995
1054615792109231599 ~1994
1054636192109272399 ~1994
1054667032109334079 ~1994
1054766816328600879 ~1995
1054798318438386499 ~1995
1054821592109643199 ~1994
1054829392109658799 ~1994
1054855432109710879 ~1994
1054872718438981699 ~1995
1054877992109755999 ~1994
1054880878439046979 ~1995
1054916278439330179 ~1995
1054934632109869279 ~1994
Exponent Prime Factor Digits Year
105494699443077735910 ~1997
1054951616329709679 ~1995
1054972192109944399 ~1994
1054978912109957839 ~1994
1055001232110002479 ~1994
1055003098440024739 ~1995
1055007712110015439 ~1994
1055028298440226339 ~1995
1055042512110085039 ~1994
1055070118440560899 ~1995
105509009147712612710 ~1996
1055090392110180799 ~1994
1055150512110301039 ~1994
1055161432110322879 ~1994
1055171992110343999 ~1994
1055182912110365839 ~1994
1055208232110416479 ~1994
1055240176331441039 ~1995
105526991274370176710 ~1996
1055270032110540079 ~1994
1055270632110541279 ~1994
1055276992110553999 ~1994
1055296912110593839 ~1994
1055340291160874319111 ~1998
1055369992110739999 ~1994
Exponent Prime Factor Digits Year
105537181232181798310 ~1996
1055412776332476639 ~1995
1055424416332546479 ~1995
1055468512110937039 ~1994
1055480392110960799 ~1994
1055490112110980239 ~1994
1055501992111003999 ~1994
1055546512111093039 ~1994
105555509147777712710 ~1996
1055568118444544899 ~1995
1055612992111225999 ~1994
1055643592111287199 ~1994
1055659912111319839 ~1994
1055771512111543039 ~1994
105580331337857059310 ~1997
1055811736334870399 ~1995
1055831512111663039 ~1994
1055837818446702499 ~1995
105587773168940436910 ~1996
1055879392111758799 ~1994
1055984632111969279 ~1994
1056014512112029039 ~1994
1056061216336367279 ~1995
1056061912112123839 ~1994
1056096832112193679 ~1994
Home
4.739.325 digits
e-mail
25-04-20