Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1001810278014482179 ~1995
100182653320584489710 ~1996
1001843032003686079 ~1993
1001860816011164879 ~1995
1001881498015051939 ~1995
1001885512003771039 ~1993
1001906632003813279 ~1993
1001937592003875199 ~1993
100193833160310132910 ~1996
1001958712003917439 ~1993
1001960392003920799 ~1993
1001999992003999999 ~1993
1002049312004098639 ~1993
1002063416012380479 ~1995
100206863661365295910 ~1997
1002094192004188399 ~1993
100209619100209619110 ~1995
1002111592004223199 ~1993
100212341380806895910 ~1997
1002148432004296879 ~1993
1002151912004303839 ~1993
1002157432004314879 ~1993
1002168712004337439 ~1993
1002189712004379439 ~1993
100220233220484512710 ~1996
Exponent Prime Factor Digits Year
100220257160352411310 ~1996
1002227632004455279 ~1993
1002237232004474479 ~1993
1002254032004508079 ~1993
1002286976013721839 ~1995
1002294976013769839 ~1995
1002386176014317039 ~1995
100240579240577389710 ~1996
1002417592004835199 ~1993
1002430792004861599 ~1993
1002457312004914639 ~1993
1002479512004959039 ~1993
1002483592004967199 ~1993
1002484192004968399 ~1993
1002497691022547643911 ~1998
100251451100251451110 ~1995
1002517192005034399 ~1993
1002533816015202879 ~1995
1002547018020376099 ~1995
1002588712005177439 ~1993
1002590998020727939 ~1995
1002597592005195199 ~1993
100260077380988292710 ~1997
100260959421096027910 ~1997
1002613912005227839 ~1993
Exponent Prime Factor Digits Year
100261919982566806310 ~1998
1002623992005247999 ~1993
1002650032005300079 ~1993
1002656632005313279 ~1993
1002659992005319999 ~1993
100266877240640504910 ~1996
1002691318021530499 ~1995
1002718192005436399 ~1993
1002719576016317439 ~1995
1002729112005458239 ~1993
1002735592005471199 ~1993
1002774232005548479 ~1993
1002808192005616399 ~1993
1002814912005629839 ~1993
1002821032005642079 ~1993
1002843112005686239 ~1993
1002866998022935939 ~1995
1002870592005741199 ~1993
1002902512005805039 ~1993
1002909416017456479 ~1995
1002912736017476399 ~1995
1002914032005828079 ~1993
1002917878023342979 ~1995
1002924778023398179 ~1995
1002926632005853279 ~1993
Exponent Prime Factor Digits Year
1002957592005915199 ~1993
1003084792006169599 ~1993
1003086712006173439 ~1993
1003115536018693199 ~1995
1003123792006247599 ~1993
1003159312006318639 ~1993
1003162671765566299311 ~1998
1003212832006425679 ~1993
1003222798025782339 ~1995
1003249792006499599 ~1993
1003259216019555279 ~1995
1003261192006522399 ~1993
1003269832006539679 ~1993
1003274992006549999 ~1993
1003302112006604239 ~1993
1003334512006669039 ~1993
1003383232006766479 ~1993
1003391032006782079 ~1993
1003394392006788799 ~1993
100341587501707935110 ~1997
1003525976021155839 ~1995
1003527536021165199 ~1995
1003585432007170879 ~1993
1003590712007181439 ~1993
100359907100359907110 ~1995
Home
4.739.325 digits
e-mail
25-04-20