Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
982942191965884399 ~1993
982959591965919199 ~1993
98296337294889011110 ~1996
983008431966016879 ~1993
983009631966019279 ~1993
983041791966083599 ~1993
983042631966085279 ~1993
983044911966089839 ~1993
983056431966112879 ~1993
983079477864635779 ~1995
983096391966192799 ~1993
983099511966199039 ~1993
983105877864846979 ~1995
983118591966237199 ~1993
983119191966238399 ~1993
983163591966327199 ~1993
983170311966340639 ~1993
98320787550596407310 ~1997
983243277865946179 ~1995
983245335899471999 ~1995
983257911966515839 ~1993
983277717866221699 ~1995
983287735899726399 ~1995
983323617866588899 ~1995
983358015900148079 ~1995
Exponent Prime Factor Digits Year
983365191966730399 ~1993
983369631966739279 ~1993
983379231966758479 ~1993
983400831966801679 ~1993
983433135900598799 ~1995
983435511966871039 ~1993
98344577137682407910 ~1995
983457117867656899 ~1995
983473935900843599 ~1995
983480391966960799 ~1993
98348233688437631110 ~1997
983518431967036879 ~1993
983529591967059199 ~1993
983546991967093999 ~1993
983645511967291039 ~1993
983652711967305439 ~1993
983690391967380799 ~1993
983690535902143199 ~1995
983707431967414879 ~1993
983709111967418239 ~1993
983731039837310319 ~1995
983731791967463599 ~1993
983752197870017539 ~1995
983767311967534639 ~1993
98379301295137903110 ~1996
Exponent Prime Factor Digits Year
983800911967601839 ~1993
983806191967612399 ~1993
983807031967614079 ~1993
983826535902959199 ~1995
98384263157414820910 ~1996
983854311967708639 ~1993
983864991967729999 ~1993
983867031967734079 ~1993
983892111967784239 ~1993
983899791967799599 ~1993
983929791967859599 ~1993
983963391967926799 ~1993
983997535903985199 ~1995
984007191968014399 ~1993
98403713137765198310 ~1995
984055191968110399 ~1993
984079935904479599 ~1995
984088791968177599 ~1993
984090711968181439 ~1993
984097911968195839 ~1993
98410321472369540910 ~1997
984118575904711439 ~1995
984142575904855439 ~1995
984192419271092502311 ~2000
984222111968444239 ~1993
Exponent Prime Factor Digits Year
984228711968457439 ~1993
984230631968461279 ~1993
984336831968673679 ~1993
984348297874786339 ~1995
984373311968746639 ~1993
984407997875263939 ~1995
984432231968864479 ~1993
984438111968876239 ~1993
984492711968985439 ~1993
984520879845208719 ~1995
984534135907204799 ~1995
984538191969076399 ~1993
984555231969110479 ~1993
984558791654058767311 ~1998
984604311969208639 ~1993
984620511969241039 ~1993
984625431969250879 ~1993
984641391969282799 ~1993
984642111969284239 ~1993
984643191969286399 ~1993
984645591969291199 ~1993
984680991969361999 ~1993
984684231969368479 ~1993
984686031969372079 ~1993
984697935908187599 ~1995
Home
4.739.325 digits
e-mail
25-04-20