Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
62532007100051211310 ~1994
625354191250708399 ~1992
62535563262649364710 ~1995
625356111250712239 ~1992
625357431250714879 ~1992
625367391250734799 ~1992
625383231250766479 ~1992
625390975003127779 ~1993
625392711250785439 ~1992
625393573752361439 ~1993
625413796254137919 ~1994
625417791250835599 ~1992
625421533752529199 ~1993
625444911250889839 ~1992
625450191250900399 ~1992
625451391250902799 ~1992
625467413752804479 ~1993
625486911250973839 ~1992
625494111250988239 ~1992
625506231251012479 ~1992
625519973753119839 ~1993
625562533753375199 ~1993
62556707300272193710 ~1995
625571938758007039 ~1994
625579813753478879 ~1993
Exponent Prime Factor Digits Year
62558227112604808710 ~1994
625587111251174239 ~1992
625588191251176399 ~1992
625593831251187679 ~1992
625599295004794339 ~1993
625609191251218399 ~1992
625617013753702079 ~1993
625621973753731839 ~1993
625641711251283439 ~1992
625651431251302879 ~1992
625651791251303599 ~1992
625653973753923839 ~1993
625657911251315839 ~1992
625664031251328079 ~1992
625671591251343199 ~1992
625684791251369599 ~1992
625697391251394799 ~1992
625714791251429599 ~1992
625715275005722179 ~1993
625739391251478799 ~1992
625780311251560639 ~1992
62578081187734243110 ~1995
625787215006297699 ~1993
625789311251578639 ~1992
625794591251589199 ~1992
Exponent Prime Factor Digits Year
625798311251596639 ~1992
62580311162708808710 ~1995
625819075006552579 ~1993
625840791251681599 ~1992
625848591251697199 ~1992
625896231251792479 ~1992
625897311251794639 ~1992
625900431251800879 ~1992
625901031251802079 ~1992
625917295007338339 ~1993
625934511251869039 ~1992
625939133755634799 ~1993
625958031251916079 ~1992
625958391251916799 ~1992
625970631251941279 ~1992
625983231251966479 ~1992
625984911251969839 ~1992
626011791252023599 ~1992
626020311252040639 ~1992
626025831252051679 ~1992
626027031252054079 ~1992
626031115008248899 ~1993
626035311252070639 ~1992
62603839112686910310 ~1994
626041195008329539 ~1993
Exponent Prime Factor Digits Year
626063631252127279 ~1992
626072031252144079 ~1992
626080375008642979 ~1993
626091711252183439 ~1992
626094711252189439 ~1992
626165031252330079 ~1992
626167795009342339 ~1993
626172111252344239 ~1992
626179791252359599 ~1992
626187415009499299 ~1993
626204511252409039 ~1992
626212311252424639 ~1992
626217076262170719 ~1994
626217111252434239 ~1992
626225031252450079 ~1992
626262595010100739 ~1993
626263791252527599 ~1992
626270631252541279 ~1992
626325231252650479 ~1992
626340591252681199 ~1992
62634763100215620910 ~1994
626366991252733999 ~1992
62637007964609907910 ~1997
626386191252772399 ~1992
626389975011119779 ~1993
Home
5.157.210 digits
e-mail
25-11-02