Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
620526711241053439 ~1992
620540391241080799 ~1992
620574831241149679 ~1992
620583231241166479 ~1992
62058923148941415310 ~1994
620593311241186639 ~1992
620606391241212799 ~1992
620642511241285039 ~1992
62064377484102140710 ~1996
620657213723943279 ~1993
62066611297919732910 ~1995
620677013724062079 ~1993
620686311241372639 ~1992
620706231241412479 ~1992
620726631241453279 ~1992
620729214965833699 ~1993
620734911241469839 ~1992
620741391241482799 ~1992
620742231241484479 ~1992
62074669186224007110 ~1995
620766111241532239 ~1992
620767676009031045711 ~1998
620779494966235939 ~1993
620779933724679599 ~1993
620792631241585279 ~1992
Exponent Prime Factor Digits Year
620793831241587679 ~1992
620812311241624639 ~1992
620818791241637599 ~1992
620825511241651039 ~1992
620832231241664479 ~1992
620833974966671779 ~1993
620845911241691839 ~1992
620854311241708639 ~1992
620865594966924739 ~1993
620874711241749439 ~1992
620879514967036099 ~1993
620884914967079299 ~1993
620898831241797679 ~1992
620929519934872179 ~1994
620951511241903039 ~1992
620961173725767039 ~1993
62096467149031520910 ~1994
620974191241948399 ~1992
620990031241980079 ~1992
620991111241982239 ~1992
620991231241982479 ~1992
620993631241987279 ~1992
62100239298081147310 ~1995
621007613726045679 ~1993
621028973726173839 ~1993
Exponent Prime Factor Digits Year
621031791242063599 ~1992
621038511242077039 ~1992
621043791242087599 ~1992
621045831242091679 ~1992
62105479111789862310 ~1994
621057831242115679 ~1992
621062511242125039 ~1992
62106533198740905710 ~1995
621073431242146879 ~1992
621076978695077599 ~1994
621084111242168239 ~1992
621094311242188639 ~1992
621098631242197279 ~1992
621100431242200879 ~1992
621109311242218639 ~1992
621120231242240479 ~1992
62112613844731536910 ~1996
621127312546621971111 ~1998
621140511242281039 ~1992
621158631242317279 ~1992
621158991242317999 ~1992
621162979938607539 ~1994
621169133727014799 ~1993
621175431242350879 ~1992
621176631242353279 ~1992
Exponent Prime Factor Digits Year
621186591242373199 ~1992
621186894969495139 ~1993
621188631242377279 ~1992
621203413727220479 ~1993
621208791242417599 ~1992
621222831242445679 ~1992
621228711242457439 ~1992
621237231242474479 ~1992
621240711242481439 ~1992
621254991242509999 ~1992
621265911242531839 ~1992
621287574970300579 ~1993
621322431242644879 ~1992
621322674970581379 ~1993
621329631242659279 ~1992
621366111242732239 ~1992
621369831242739679 ~1992
621388996213889919 ~1994
62139659111851386310 ~1994
621401391242802799 ~1992
621418133728508799 ~1993
621423916214239119 ~1994
621428511242857039 ~1992
621432838961061408711 ~1999
621434391242868799 ~1992
Home
4.918.085 digits
e-mail
25-07-13