Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
523264275232642719 ~1993
523271991046543999 ~1991
523277533139665199 ~1992
52329119125589885710 ~1994
523305711046611439 ~1991
52331353115128976710 ~1994
523328031046656079 ~1991
52332803544261151310
523331031046662079 ~1991
523350711046701439 ~1991
523356978373711539 ~1993
523373991046747999 ~1991
523376391046752799 ~1991
523383111046766239 ~1991
523386231046772479 ~1991
52338877125613304910 ~1994
52339531376844623310 ~1995
523399791046799599 ~1991
523404711046809439 ~1991
523419173140515039 ~1992
523420911046841839 ~1991
523430773140584639 ~1992
523435191046870399 ~1991
523448391046896799 ~1991
523462911046925839 ~1991
Exponent Prime Factor Digits Year
523467711046935439 ~1991
523468911046937839 ~1991
523472031046944079 ~1991
523478631046957279 ~1991
523484631046969279 ~1991
523492013140952079 ~1992
523496031046992079 ~1991
523509831047019679 ~1991
523521231047042479 ~1991
523530315235303119 ~1993
52354321115179506310 ~1994
523543911047087839 ~1991
523556511047113039 ~1991
523591191047182399 ~1991
523601511047203039 ~1991
523602111047204239 ~1991
523615278377844339 ~1993
52362223178031558310 ~1994
52363471209453884110 ~1994
523635133141810799 ~1992
523635831047271679 ~1991
523657518378520179 ~1993
523673031047346079 ~1991
523674111047348239 ~1991
523679631047359279 ~1991
Exponent Prime Factor Digits Year
523680591047361199 ~1991
523683831047367679 ~1991
523689711047379439 ~1991
523695613142173679 ~1992
523699213142195279 ~1992
52370063167584201710 ~1994
523704773142228639 ~1992
52370971471338739110 ~1995
523713231047426479 ~1991
523724511047449039 ~1991
523728231047456479 ~1991
523734591047469199 ~1991
523742991047485999 ~1991
523749231047498479 ~1991
523752013142512079 ~1992
523774311047548639 ~1991
523782111047564239 ~1991
523790511047581039 ~1991
523809537333333439 ~1993
523813791047627599 ~1991
523816911047633839 ~1991
523827831047655679 ~1991
523832031047664079 ~1991
523832773142996639 ~1992
523834911047669839 ~1991
Exponent Prime Factor Digits Year
523843791047687599 ~1991
523852431047704879 ~1991
523877391047754799 ~1991
523879431047758879 ~1991
523880933143285599 ~1992
523883511047767039 ~1991
523890915238909119 ~1993
523893711047787439 ~1991
523902231047804479 ~1991
52390781450560716710 ~1995
523911231047822479 ~1991
523919031047838079 ~1991
523935591047871199 ~1991
52394141167661251310 ~1994
523966974191735779 ~1993
523969791047939599 ~1991
523971231047942479 ~1991
523980111047960239 ~1991
524000391048000799 ~1991
524004591048009199 ~1991
524024031048048079 ~1991
524038311048076639 ~1991
524038911048077839 ~1991
524042391048084799 ~1991
524054031048108079 ~1991
Home
5.157.210 digits
e-mail
25-11-02