Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
629246773775480639 ~1993
629254375034034979 ~1993
629276031258552079 ~1992
629291031258582079 ~1992
629297995034383939 ~1993
629344191258688399 ~1992
62934583100695332910 ~1994
629360391258720799 ~1992
629393511258787039 ~1992
629400231258800479 ~1992
629428431258856879 ~1992
629441031258882079 ~1992
629448111258896239 ~1992
629461315035690499 ~1993
629465991258931999 ~1992
629489391258978799 ~1992
629489395035915139
629500333777001999 ~1993
629522511259045039 ~1992
629534333777205999 ~1993
629543991259087999 ~1992
629585031259170079 ~1992
62959627113327328710 ~1994
629598111259196239 ~1992
629604831259209679 ~1992
Exponent Prime Factor Digits Year
629613133777678799 ~1993
629659791259319599 ~1992
62967227151121344910 ~1995
629674191259348399 ~1992
62967991113342383910 ~1994
629690573778143439 ~1993
629693031259386079 ~1992
629696391259392799 ~1992
62970841138535850310 ~1994
629716911259433839 ~1992
629723631259447279 ~1992
629736711259473439 ~1992
629753511259507039 ~1992
629768533778611199 ~1993
62977547163741622310 ~1995
629778013778668079 ~1993
629788191259576399 ~1992
629803431259606879 ~1992
629805591259611199 ~1992
629806791259613599 ~1992
629808175038465379 ~1993
629811231259622479 ~1992
62981431113366575910 ~1994
629823711259647439 ~1992
62983183969941018310 ~1997
Exponent Prime Factor Digits Year
629837573779025439 ~1993
629841231259682479 ~1992
629876511259753039 ~1992
629889831259779679 ~1992
62989627113381328710 ~1994
629896975039175779 ~1993
629903031259806079 ~1992
62991727100786763310 ~1994
629928591259857199 ~1992
629934711259869439 ~1992
629947791259895599 ~1992
629957991259915999 ~1992
629963215039705699 ~1993
629968191259936399 ~1992
629988111259976239 ~1992
629992675039941379 ~1993
630010911260021839 ~1992
630034431260068879 ~1992
630040876300408719 ~1994
630041631260083279 ~1992
630047275040378179 ~1993
630054831260109679 ~1992
630068991260137999 ~1992
630092391260184799 ~1992
630121431260242879 ~1992
Exponent Prime Factor Digits Year
630131991260263999 ~1992
630135231260270479 ~1992
630139573780837439 ~1993
630169311260338639 ~1992
630175791260351599 ~1992
63018139403316089710 ~1996
630185031260370079 ~1992
630204591260409199 ~1992
630209391260418799 ~1992
63021229302501899310 ~1995
630217133781302799 ~1993
630230391260460799 ~1992
630238431260476879 ~1992
630239511260479039 ~1992
630241911260483839 ~1992
630251413781508479 ~1993
630257991260515999 ~1992
630263031260526079 ~1992
630279613781677679 ~1993
63029929138665843910 ~1994
630301191260602399 ~1992
630304791260609599 ~1992
630315831260631679 ~1992
630345111260690239 ~1992
630353631260707279 ~1992
Home
4.724.182 digits
e-mail
25-04-13