Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
621084111242168239 ~1992
621094311242188639 ~1992
621098631242197279 ~1992
621100431242200879 ~1992
621109311242218639 ~1992
62112613844731536910 ~1996
621127312546621971111 ~1998
621140511242281039 ~1992
621158631242317279 ~1992
621158991242317999 ~1992
621162979938607539 ~1994
621169133727014799 ~1993
621175431242350879 ~1992
621176631242353279 ~1992
621186591242373199 ~1992
621188631242377279 ~1992
621203413727220479 ~1993
621208791242417599 ~1992
621222831242445679 ~1992
621228711242457439 ~1992
621237231242474479 ~1992
621240711242481439 ~1992
621254991242509999 ~1992
621265911242531839 ~1992
621322431242644879 ~1992
Exponent Prime Factor Digits Year
621322674970581379 ~1993
621329631242659279 ~1992
621366111242732239 ~1992
621369831242739679 ~1992
621388996213889919 ~1994
62139659111851386310 ~1994
621401391242802799 ~1992
621418133728508799 ~1993
621423916214239119 ~1994
621428511242857039 ~1992
621432838961061408711 ~1999
621434391242868799 ~1992
621444373728666239 ~1993
621491236214912319 ~1994
621515813729094879 ~1993
621526911243053839 ~1992
621532431243064879 ~1992
621544191243088399 ~1992
621552591243105199 ~1992
621566391243132799 ~1992
621576111243152239 ~1992
621576711243153439 ~1992
621586191243172399 ~1992
62158651111885571910 ~1994
621587031243174079 ~1992
Exponent Prime Factor Digits Year
621597111243194239 ~1992
621623511243247039 ~1992
621634996216349919 ~1994
621652191243304399 ~1992
621653533729921199 ~1993
621666831243333679 ~1992
621680031243360079 ~1992
621680631243361279 ~1992
621687831243375679 ~1992
621694791243389599 ~1992
621702111243404239 ~1992
621705831243411679 ~1992
621720831243441679 ~1992
62172101186516303110 ~1995
62172911111911239910 ~1994
621732111243464239 ~1992
621738196217381919 ~1994
62174977435224839110 ~1996
621755631243511279 ~1992
621769311243538639 ~1992
621779333730675999 ~1993
621813231243626479 ~1992
621820331940079429711 ~1997
621830719949291379 ~1994
621859191243718399 ~1992
Exponent Prime Factor Digits Year
621862311243724639 ~1992
621867111243734239 ~1992
621914631243829279 ~1992
621921831243843679 ~1992
621931431243862879 ~1992
621932813731596879 ~1993
62194303211460630310 ~1995
621961311243922639 ~1992
621965391243930799 ~1992
621968333731809999 ~1993
621969831243939679 ~1992
621973378707627199 ~1994
621990231243980479 ~1992
622001391244002799 ~1992
62202743149286583310 ~1994
622046031343619424911 ~1997
622086133732516799 ~1993
622087431244174879 ~1992
62209267111976680710 ~1994
62209711808726243110 ~1996
622101711244203439 ~1992
622102791244205599 ~1992
622128231244256479 ~1992
622167111244334239 ~1992
62217241734163443910 ~1996
Home
4.724.182 digits
e-mail
25-04-13