Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
549670911099341839 ~1991
549676213298057279 ~1993
549676573298059439 ~1993
549682191099364399 ~1991
549685333298111999 ~1993
54968899494720091110 ~1995
549692694397541539 ~1993
549696831099393679 ~1991
549770631099541279 ~1991
549774231099548479 ~1991
549775791099551599 ~1991
549784914398279299 ~1993
549801111099602239 ~1991
549812031099624079 ~1991
549816231099632479 ~1991
549856311099712639 ~1991
549868813299212879 ~1993
54991543351945875310 ~1995
549933111099866239 ~1991
54993709120986159910 ~1994
549948111099896239 ~1991
549962991099925999 ~1991
549968631099937279 ~1991
549978013299868079 ~1993
549981591099963199 ~1991
Exponent Prime Factor Digits Year
549994014399952099 ~1993
549997613299985679 ~1993
550001631100003279 ~1991
550008711100017439 ~1991
550034631100069279 ~1991
550050733300304399 ~1993
55006631539064983910 ~1996
550070631100141279 ~1991
550073413300440479 ~1993
550094991100189999 ~1991
550103595501035919 ~1993
550105311100210639 ~1991
550106391100212799 ~1991
550108813300652879 ~1993
550120311100240639 ~1991
550127031100254079 ~1991
550150914401207299 ~1993
550152231100304479 ~1991
550165191100330399 ~1991
550170711100341439 ~1991
550179231100358479 ~1991
550180791100361599 ~1991
550184274401474179 ~1993
550201911100403839 ~1991
550246911100493839 ~1991
Exponent Prime Factor Digits Year
55025101165075303110 ~1994
550253577703549999 ~1994
550271274402170179 ~1993
550292031100584079 ~1991
550296591100593199 ~1991
550307991100615999 ~1991
550309311100618639 ~1991
550311013301866079 ~1993
550315791100631599 ~1991
550345431100690879 ~1991
550360311100720639 ~1991
550371791673130241711 ~1997
550377111100754239 ~1991
550377711100755439 ~1991
550394031100788079 ~1991
550395591100791199 ~1991
550395711100791439 ~1991
550399515503995119 ~1993
550422711100845439 ~1991
550422831100845679 ~1991
55042739132102573710 ~1994
550434591100869199 ~1991
550435573302613439 ~1993
550435911100871839 ~1991
550450431100900879 ~1991
Exponent Prime Factor Digits Year
550456191100912399 ~1991
550459791100919599 ~1991
550472031100944079 ~1991
550472991100945999 ~1991
550478511100957039 ~1991
550481511100963039 ~1991
550493631100987279 ~1991
550504911101009839 ~1991
550509013303054079 ~1993
550518831101037679 ~1991
550522191101044399 ~1991
550528431101056879 ~1991
550530831101061679 ~1991
550536231101072479 ~1991
550536711101073439 ~1991
550545111101090239 ~1991
550552191101104399 ~1991
550556031101112079 ~1991
550557294404458339 ~1993
550561431101122879 ~1991
550563591101127199 ~1991
550577773303466639 ~1993
550591133303546799 ~1993
550616631101233279 ~1991
550622631101245279 ~1991
Home
4.903.097 digits
e-mail
25-07-08