Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
501568311003136639 ~1991
501570111003140239 ~1991
501571431003142879 ~1991
501572031003144079 ~1991
501574038025184499 ~1993
501585831003171679 ~1991
501619311003238639 ~1991
501658911003317839 ~1991
501682431003364879 ~1991
501684533010107199 ~1992
501702831003405679 ~1991
501703311003406639 ~1991
501703431003406879 ~1991
501709311003418639 ~1991
501713115017131119 ~1993
501722991003445999 ~1991
501723711003447439 ~1991
501727791003455599 ~1991
501732714013861699 ~1993
501743933010463599 ~1992
501763377024687199 ~1993
501763911003527839 ~1991
501767511003535039 ~1991
501775813010654879 ~1992
501784311003568639 ~1991
Exponent Prime Factor Digits Year
501793914014351299 ~1993
50180401110396882310 ~1994
501814191003628399 ~1991
501820311003640639 ~1991
501853191003706399 ~1991
501853515018535119 ~1993
501854511003709039 ~1991
501875511003751039 ~1991
501885774015086179 ~1993
501900111003800239 ~1991
501907431003814879 ~1991
501916377026829199 ~1993
501916791003833599 ~1991
501927111003854239 ~1991
501927831003855679 ~1991
501943791003887599 ~1991
50194699813154123910 ~1996
501958074015664579 ~1993
501965391003930799 ~1991
501994813011968879 ~1992
501995814015966499 ~1993
501997331526071883311 ~1996
502011591004023199 ~1991
502028511004057039 ~1991
50203081753046215110 ~1996
Exponent Prime Factor Digits Year
502043511004087039 ~1991
502068111004136239 ~1991
502068231004136479 ~1991
502073511004147039 ~1991
502074013012444079 ~1992
502076838033229299 ~1993
502090311004180639 ~1991
502092231004184479 ~1991
502106511004213039 ~1991
502107771325564512911 ~1996
502110711004221439 ~1991
502125231004250479 ~1991
502134831004269679 ~1991
502139511004279039 ~1991
502155773012934639 ~1992
502164231004328479 ~1991
502164831004329679 ~1991
502165977030323599 ~1993
502166933013001599 ~1992
502168995021689919 ~1993
502178991004357999 ~1991
502184391004368799 ~1991
502195791004391599 ~1991
502210973013265839 ~1992
502211031004422079 ~1991
Exponent Prime Factor Digits Year
502213879039849679 ~1993
502214391004428799 ~1991
502223031004446079 ~1991
502228911004457839 ~1991
502244031004488079 ~1991
502267911004535839 ~1991
502272111004544239 ~1991
502283235022832319 ~1993
502303818036860979 ~1993
502307697032307679 ~1993
502366191004732399 ~1991
502375911004751839 ~1991
502382391004764799 ~1991
502389319043007599 ~1993
50239643130623071910 ~1994
502410973014465839 ~1992
502415391004830799 ~1991
502422533014535199 ~1992
502427391004854799 ~1991
50242771241165300910 ~1995
502431594019452739 ~1993
502439391004878799 ~1991
502445991004891999 ~1991
502448391004896799 ~1991
502450431004900879 ~1991
Home
4.903.097 digits
e-mail
25-07-08