Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
531310311062620639 ~1991
531325373187952239 ~1992
531351111062702239 ~1991
531356391062712799 ~1991
531357111062714239 ~1991
531361191062722399 ~1991
531363111062726239 ~1991
531365413188192479 ~1992
531378111062756239 ~1991
531392274251138179 ~1993
531397911062795839 ~1991
53141107127538656910 ~1994
531415311062830639 ~1991
531436791062873599 ~1991
531445191062890399 ~1991
531449511062899039 ~1991
531461394251691139 ~1993
531462831062925679 ~1991
531487431062974879 ~1991
531488631062977279 ~1991
531500991063001999 ~1991
531510711063021439 ~1991
531514911063029839 ~1991
531521991063043999 ~1991
531543195315431919 ~1993
Exponent Prime Factor Digits Year
531547791063095599 ~1991
531551631063103279 ~1991
53156141170099651310 ~1994
531582231063164479 ~1991
53158223170106313710
531585591063171199 ~1991
531592311063184639 ~1991
531601973189611839 ~1992
531633591063267199 ~1991
531637074253096579 ~1993
531643431063286879 ~1991
531659391063318799 ~1991
531664133189984799 ~1992
531672414253379299 ~1993
531675013190050079 ~1992
531682613190095679 ~1992
531686031063372079 ~1991
53168849202041626310 ~1994
531693733190162399 ~1992
531707031063414079 ~1991
531707511063415039 ~1991
531726831063453679 ~1991
531731573190389439 ~1992
531741111063482239 ~1991
531767031063534079 ~1991
Exponent Prime Factor Digits Year
531778791063557599 ~1991
531803391063606799 ~1991
531828474254627779 ~1993
531829314254634499 ~1993
531840231063680479 ~1991
531842031063684079 ~1991
531873831063747679 ~1991
531876711063753439 ~1991
531892311063784639 ~1991
531897133191382799 ~1992
53190299127656717710 ~1994
531905478510487539 ~1994
531930831063861679 ~1991
531974773191848639 ~1992
531994791063989599 ~1991
531997191063994399 ~1991
531999591063999199 ~1991
532003333192019999 ~1992
53200853127682047310 ~1994
532015213192091279 ~1992
53201927393694259910 ~1995
532035195320351919 ~1993
532035711064071439 ~1991
53203583138329315910 ~1994
532039813192238879 ~1992
Exponent Prime Factor Digits Year
532041711064083439 ~1991
532043235320432319 ~1993
532048311064096639 ~1991
532050594256404739 ~1993
532057911064115839 ~1991
532060013192360079 ~1992
532060311064120639 ~1991
532060813192364879 ~1992
532089413192536479 ~1992
532089831064179679 ~1991
532109031064218079 ~1991
532116591064233199 ~1991
532119711064239439 ~1991
532131831064263679 ~1991
532156911064313839 ~1991
532165431064330879 ~1991
532171213193027279 ~1992
532179079579223279 ~1994
532196595321965919 ~1993
532200591064401199 ~1991
532203711064407439 ~1991
532229213193375279 ~1992
532230831064461679 ~1991
532231933193391599 ~1992
532237074257896579 ~1993
Home
4.724.182 digits
e-mail
25-04-13