Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
506275431012550879 ~1991
506296431012592879 ~1991
506298111012596239 ~1991
506307711012615439 ~1991
50630903162018889710 ~1994
506309991012619999 ~1991
506360994050887939 ~1993
50637541111402590310 ~1994
506389431012778879 ~1991
506413133038478799 ~1992
506429574051436579 ~1993
506430831012861679 ~1991
506442711012885439 ~1991
506468631012937279 ~1991
506469711012939439 ~1991
506476431012952879 ~1991
506480511012961039 ~1991
506494911012989839 ~1991
506496733038980399 ~1992
506512311013024639 ~1991
50652827374830919910 ~1995
506539791013079599 ~1991
50655697121573672910 ~1994
50656789364728880910 ~1995
506576475065764719 ~1993
Exponent Prime Factor Digits Year
506577294052618339 ~1993
506580591013161199 ~1991
506587911013175839 ~1991
506634413039806479 ~1992
506639391013278799 ~1991
506644614053156899 ~1993
506645631013291279 ~1991
506649591013299199 ~1991
506653995066539919 ~1993
506656791013313599 ~1991
506663511013327039 ~1991
506666413039998479 ~1992
506666991013333999 ~1991
506672511013345039 ~1991
506672573040035439 ~1992
506675031013350079 ~1991
506675775705169170311 ~1998
506677911013355839 ~1991
506691231013382479 ~1991
506692911013385839 ~1991
506696031013392079 ~1991
506710791013421599 ~1991
506727111013454239 ~1991
506737519121275199 ~1993
506739013040434079 ~1992
Exponent Prime Factor Digits Year
506739111013478239 ~1991
506745231013490479 ~1991
506746995067469919 ~1993
506766111013532239 ~1991
506791191013582399 ~1991
506810511013621039 ~1991
50685637446033605710 ~1995
506859173041155039 ~1992
506875133041250799 ~1992
506875515068755119 ~1993
506878813041272879 ~1992
506888991013777999 ~1991
506897631013795279 ~1991
506897991013795999 ~1991
506904831013809679 ~1991
50691187121658848910 ~1994
506925174055401379 ~1993
506926791013853599 ~1991
506929191013858399 ~1991
506929911013859839 ~1991
506936471875664939111 ~1997
506938933041633599 ~1992
506942391013884799 ~1991
506973294055786339 ~1993
506983911013967839 ~1991
Exponent Prime Factor Digits Year
506983977097775599 ~1993
506986191013972399 ~1991
506986911013973839 ~1991
507005991014011999 ~1991
507008991014017999 ~1991
507009599126172639 ~1993
507035391014070799 ~1991
507042711014085439 ~1991
507046911014093839 ~1991
507051831014103679 ~1991
50709697395535636710 ~1995
507097311014194639 ~1991
507106191014212399 ~1991
507109013042654079 ~1992
507134715071347119 ~1993
507135111014270239 ~1991
507138231014276479 ~1991
507139791014279599 ~1991
507145933042875599 ~1992
507152511014305039 ~1991
507161631014323279 ~1991
507169573043017439 ~1992
507173631014347279 ~1991
507189111014378239 ~1991
507192831014385679 ~1991
Home
4.724.182 digits
e-mail
25-04-13