Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
500651519011727199 ~1993
500656494005251939 ~1993
500656791001313599 ~1991
500669031001338079 ~1991
500674431001348879 ~1991
500688839613225536111 ~1998
500709591001419199 ~1991
500712711001425439 ~1991
500738511001477039 ~1991
500740013004440079 ~1992
500744991001489999 ~1991
50074853120179647310 ~1994
500754231001508479 ~1991
500755791001511599 ~1991
500763111001526239 ~1991
500771511001543039 ~1991
500772111001544239 ~1991
500776911001553839 ~1991
500786631001573279 ~1991
500787831001575679 ~1991
500836791001673599 ~1991
500843835008438319 ~1993
500846631001693279 ~1991
500850231001700479 ~1991
500902194007217539 ~1993
Exponent Prime Factor Digits Year
500905311001810639 ~1991
500907231001814479 ~1991
500914911001829839 ~1991
500927533005565199 ~1992
500932133005592799 ~1992
500934231001868479 ~1991
50093569200374276110 ~1994
500939413005636479 ~1992
500944911001889839 ~1991
500957631001915279 ~1991
500960991001921999 ~1991
500962431001924879 ~1991
500965311001930639 ~1991
500975391001950799 ~1991
500977791001955599 ~1991
500983191001966399 ~1991
500991111001982239 ~1991
500996391001992799 ~1991
500997111001994239 ~1991
500997231001994479 ~1991
501006795010067919 ~1993
501015591002031199 ~1991
501022431002044879 ~1991
501027711002055439 ~1991
501038991002077999 ~1991
Exponent Prime Factor Digits Year
501044031002088079 ~1991
501051231002102479 ~1991
501052813006316879 ~1992
501054591002109199 ~1991
501056511002113039 ~1991
501059631002119279 ~1991
501062991002125999 ~1991
501075231002150479 ~1991
501080214008641699 ~1993
501089511002179039 ~1991
501089631002179279 ~1991
50109263130284083910 ~1994
501132231002264479 ~1991
501134031002268079 ~1991
501135413006812479 ~1992
501135591002271199 ~1991
501139973006839839 ~1992
501140631002281279 ~1991
501142311002284639 ~1991
501151191002302399 ~1991
501163494009307939 ~1993
501168231002336479 ~1991
501187911002375839 ~1991
501199911002399839 ~1991
501200991002401999 ~1991
Exponent Prime Factor Digits Year
501206631002413279 ~1991
501212991002425999 ~1991
501217191002434399 ~1991
501234591002469199 ~1991
501260235012602319 ~1993
501261591002523199 ~1991
501284391002568799 ~1991
501298791002597599 ~1991
501310013007860079 ~1992
501313911002627839 ~1991
501318111002636239 ~1991
501318711002637439 ~1991
501323391002646799 ~1991
501329031002658079 ~1991
501335631002671279 ~1991
501343791002687599 ~1991
501349191002698399 ~1991
501361431002722879 ~1991
501364311002728639 ~1991
501369591002739199 ~1991
501373191002746399 ~1991
501381894011055139 ~1993
501393591002787199 ~1991
501401511002803039 ~1991
501410511002821039 ~1991
Home
4.724.182 digits
e-mail
25-04-13