Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
30476531609530638 ~1989
304765912438127299 ~1991
30477059609541198 ~1989
304771931828631599 ~1991
30477731609554638 ~1989
30477959609559198 ~1989
30478523609570478 ~1989
30478823609576478 ~1989
304790171828741039 ~1991
304790233047902319 ~1991
304791011828746079 ~1991
30479737877816425710 ~1995
30479831609596638 ~1989
304798371828790239 ~1991
30479951609599038 ~1989
30480251609605038 ~1989
304802512438420099
30481103609622078 ~1989
30481631609632638 ~1989
30481679609633598 ~1989
30481859609637198 ~1989
30482423609648478 ~1989
304831393048313919 ~1991
30483143609662878 ~1989
30485783609715678 ~1989
Exponent Prime Factor Digits Year
304858271859635447111 ~1996
30486251609725038 ~1989
304867192438937539 ~1991
304879675487834079 ~1992
30488411609768238 ~1989
30488519609770398 ~1989
30489059609781198 ~1989
30489419609788398 ~1989
30489479609789598 ~1989
30489659609793198 ~1989
30489671609793438 ~1989
30489839609796798 ~1989
30490151609803038 ~1989
30491291609825838 ~1989
30491603609832078 ~1989
30491651609833038 ~1989
304917712439341699 ~1991
304919337318063939 ~1992
304922692439381539 ~1991
30492323609846478 ~1989
30492443609848878 ~1989
30493283609865678 ~1989
30493343609866878 ~1989
30493511609870238 ~1989
30493583609871678 ~1989
Exponent Prime Factor Digits Year
304936011829616079 ~1991
30493691609873838 ~1989
304940411829642479 ~1991
30494459609889198 ~1989
30494531609890638 ~1989
30494759609895198 ~1989
30494759128077987910
304948971829693839 ~1991
304951672439613379 ~1991
30495851609917038 ~1989
30496439609928798 ~1989
30497267292773763310 ~1994
30497723609954478 ~1989
304979937319518339 ~1992
30498179609963598 ~1989
30498371609967438 ~1989
30498623609972478 ~1989
304987011829922079 ~1991
30498827274489443110 ~1993
30499019609980398 ~1989
304995892439967139 ~1991
30499811609996238 ~1989
305008571830051439 ~1991
30501539610030798 ~1989
30501959610039198 ~1989
Exponent Prime Factor Digits Year
30501983610039678 ~1989
30502019610040398 ~1989
30502331610046638 ~1989
305029731830178399 ~1991
30503279610065598 ~1989
30503471610069438 ~1989
30503639610072798 ~1989
30503663610073278 ~1989
30504251610085038 ~1989
30504431610088638 ~1989
30504599610091998 ~1989
30504959610099198 ~1989
305050811830304879 ~1991
305054833050548319 ~1991
30505547146426625710 ~1993
305060713050607119 ~1991
30506519610130398 ~1989
30506699610133998 ~1989
305068135167854122311 ~1997
305071737321721539 ~1992
30507419610148398 ~1989
30507791610155838 ~1989
30508403610168078 ~1989
305086571830519439 ~1991
30508823610176478 ~1989
Home
4.724.182 digits
e-mail
25-04-13